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Director con® gurations in a nematic liquid crystal can be determined by minimizing its total
elastic free energy, for given elastic constants and speci® c boundary conditions. In some cases,
these con® gurations have been obtained by numerical procedures where the elastic free energy
density plays the same role as the overall potential energy in a standard Metropolis Monte
Carlo simulation. The interaction energies or potentials used in these studies are short ranged
but, in general, not pairwise additive, unless the three elastic constants are set to a common
value, thus reducing the potential to that in the well-known Lebwohl± Lasher lattice model.
On the other hand, we can construct, in di� erent ways, a lattice model with pairwise additive
interactions, which approximately reproduces the elastic free energy density, where the
parameters de® ning the pair potential are expressed as linear combinations of elastic constants.
An anisotropic nematogenic pair interaction of this kind, originally proposed by Gruhn and
Hess (T. Gruhn and S. Hess, Z. Naturforsch. A51, 1 (1996)), has recently been investigated by
one of us, using a Monte Carlo simulation (S. Romano, Int. J. Mod. Phys. B 12, 2305 (1998)) .
Here we propose another approximate procedure for the mapping, and study the resulting
pair potential model with the aid of Monte Carlo simulations. The behaviour of the nematic
phases formed by the two models is compared together with the predictions of molecular
® eld theory and the properties of the Lebwohl± Lasher model.

1. Introduction points, and the partial derivatives de® ning the elastic free
energy density are approximated by ® nite increments. InImportant aspects of liquid crystal science and tech-

nology are related to their elastic properties: for example, this approach, special care is needed in order to ensure
that the algorithm preserves the underlying nematicthey are involved in a number of phenomena where the

director is manipulated by external ® elds, as in display symmetry with respect to inversion of the director ® eld
(see, e.g. [9] ). Metropolis Monte Carlo approaches havedevices, and a knowledge of the elastic behaviour is also

important in the study of defects [1] . Thus it is possible also been used in this context: sometimes the energy
minimization was carried out at zero temperature [5, 6] ,to determine director con® gurations by minimizing the

total elastic free energy, for given elastic constants and while in other cases a suitably low temperature (well
inside the ordered phase) was used, as a means to ensurespeci® c boundary conditions. In a few cases this can be

done analytically [2± 4] , although, in general, numerical that the system did not become trapped in a local
minimum [7, 8, 12] . The same approach has also beenmethods have been implemented, both static and

time-dependent [5± 13] , usually involving appropriate used to investigate the ordering kinetics after quenching
from a disordered phase [13] . In all of these calculations,discretization schemes. That is, the director ® eld is

calculated on a discrete grid, usually a lattice of space the total elastic free energy density plays the same role
as the overall potential energy in a standard Monte
Carlo simulation. The potentials used in these investi-
gations are short ranged but, in general, not pairwise*Author for correspondence. e-mail: gl@soton.ac.uk
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872 G. R. Luckhurst and S. Romano

additive, and this makes the simulation rather time where
consuming; the exception occurs when the three elastic
constants are set to a common value, thus reducing (=

9
n)1 =

qn3

qx2
Õ

qn2

qx3
, (=

9
n)2 =

qn1

qx3
Õ

qn3

qx1
,

the potential to the well-known Lebwohl± Lasher model
[14, 15] . This approach has been widely followed in

(=
9

n)3 =
qn2

qx1
Õ

qn1

qx2
(3)simulation (e.g. Windle and co-workers [5, 6] ), and is

also rather common in continuum theory [2] .
It has also been noted that a pairwise additive

n ¯ (=
9

n)= �
a

n a �
b ,c

ea b c
qnc

qx b

(4)
interaction can be constructed in di� erent ways, which
approximately reproduces the elastic free energy density

(n
9

(=
9

n))1 = n2 (=
9

n)3 Õ n3 (=
9

n)2 (5)[6, 12] , so that the parameters de® ning the pair potential
(n

9
(=

9
n))2 = n3 (=

9
n)1 Õ n1 (=

9
n)3 (6)are expressed in terms of the elastic constants. For

example, a potential model of this kind, originally pro- (n
9

(=
9

n))3 = n1 (=
9

n)2 Õ n2 (=
9

n)1 . (7)
posed by Gruhn and Hess [12] , has recently been

The coordinate system set in the laboratory is de® nedinvestigated by Monte Carlo simulation [16] , under
by three orthonormal unit vectors ea , a= 1, 2, 3, andperiodic boundary conditions, the aim being to study
the coordinates x a have the dimension of length. It isthe microscopic behaviour in bulk. As we shall see, the
convenient, therefore, to transform to dimensionlesspotential parameters are linear combinations of elastic
coordinates, so that the elastic free energy density isconstants, and so, strictly, the pair potential used depends
now given by g = YL Õ

2, where L is an arbitrary length,on temperature because the elastic constants do. Clearly
and the elastic energy stored in the correspondingthis complicates the identi® cation of the model with
unit cube is then of order YL (we note that Y is nowa true intermolecular pair potential which is temper-
de® ned by equations (1) to (7), but with dimensionlessature independent. We now want to investigate another
coordinates xa ).possible mapping between the elastic free energy density

As for the pair potential model, we consider hereand the pair potential parameters, and to compare the
three-component unit vectors uk associated with a three-two approaches starting from a common set of experi-
dimensional (simple cubic) lattice, with pk denoting themental values for the elastic constants. The resulting
dimensionless lattice-point coordinates. A general evenpair potential is an extension of the Lebwohl± Lasher
anisotropic interaction potential acting between nearestlattice model, now fully allowing for di� erent values of
neighbours can be written as a polynomial, or a powerthe elastic constants, and will be used here to investigate
series, in terms of the appropriate combinations of scalarthe microscopic behaviour of the bulk system. The
invariants; this givesproperties of this will be compared with those of other

models and with the predictions of molecular ® eld theory. W = W j k= const+t2 +t3 +t4+ ¼ (8)
In the long term, we also intend to use the resulting

withpair potential to study the elastic and defect behaviour
of nematogens. t2 = c2, 1 (a

2
j +a

2
k )+ c2, 3 b

2
j k , (9)

t3 = c3, 1 a j akb j k , (10)

t4 = c4, 1 (a
4
j +a

4
k )+ c4, 2 (a j ak )

2

2. Pair potential models + c4, 3 (a
2
j +a

2
k )b

2
j k+ c4, 4 b

4
j k . (11)

We recall here the usual expression for the elastic free
The scalar invariants involving neighbouring unitenergy density of achiral nematics [2, 3]
vectors and the vector joining them are

g = (1/2 )[K 1 (= ¯ n)
2 +K 2 (n ¯ (=

9
n))2 r = pj Õ pk , s= r/ |r|, a j = u j ¯ s, ak= uk ¯ s,

b j k = uj ¯ uk ; (12)+K 3 (n
9

(=
9

n))2] , (1)

the ch, l denote arbitrary expansion coe� cients, and each
where K i are the three elastic constants and n denotes term th is a homogeneous polynomial of order h . The
the director. It is also helpful, as we shall see, to have functional form resulting from the argument developed
explicit expressions for the terms in g ; they are in [12] (§4.2, especially equations (15) and (16)), corre-

sponds to neglecting all higher order terms th with h > 5,
and to setting c4,1 = c4, 2 = c4, 4 = 0, c4, 3 Þ 0. After changing= ¯ n = �

a

qna

qxa

, (=
9

n)a = �
b ,c

ea b c
qnc

qx b

, (2)
to a more convenient notation for the coe� cients, the
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873Simulation of a nematogenic lattice model

pair potential suggested in [12] takes the form This is the dispersion interaction (or, more precisely,
an approximate expression for the dipolar contribution
to the dispersion interaction) between two identical

W = W j k= l[P2 (a j )+P 2 (ak )]+mAa j akb j k Õ
1

9B axially symmetric molecules, as proposed by London
and de Boer [18, 21, 22] ; here c denotes the anisotropy

+nP 2 (b j k )+r[P 2 (a j )+P 2 (ak )]P 2 (b j k ), (13) of the polarizability tensor. A lattice model where the
interaction is restricted to nearest neighbours produceswhere P2 (a j ) denotes the second Legendre polynomial.
a nematic-like ordering transition [20] . In contrast,Equation (13) can also be expressed as a linear com-
inclusion of next-nearest neighbours produces a groundbination of S-functions [17± 19] ; for those not familiar
state structure with sub-lattice order, but no net orienta-with the S-function representation of the pair potential,
tional order [23] . Notice also that most coe� cients inwe give in the Appendix a brief description of the
equation (15) are proportional to c

2, so that c
2 can berelevant formalism.

absorbed into e which gives an expression with a weakThe four strength parameters l, m, n, r are de® ned by
residual c dependence. Simulations were carried out withthe following combinations of elastic constants [12] ,
c = 0.5, 0.65, 0.80, and, as expected, they yielded veryincluding the factor L , so that the strength parameters
similar results, which were also in agreement with thehave the dimension of energy.
truncated potential model obtained by neglecting the
term proportional to c. The scaled transition temperature
T

*
NI for this model is about 2.25, where T * = kBT / (ec

2 ),
in comparison with a molecular ® eld estimate of 2.6424
[20] . In equation (15), c is smaller than 1 in magnitude;
however, short range potential models de® ned by c = 1G

l=
1

3
L (2K 1 Õ 3K 2 +K 3 )

m = +3L (K 2 Õ K 1 )

n=
1

3
L (K 1 Õ 3K 2 Õ K 3 )

r =
1

3
L (K 1 Õ K 3 ).

(14)
(i.e. polarizability only along the molecular symmetry
axis) have been considered in the literature [24, 25] .

It is of interest to retain the functional form of the
pair potential in equation (8) (of which both equations
(13) and (15) are special cases), but to relate the
expansion coe� cients to the elastic constants ratherThe present expression for the pair potential di� ers from
than the molecular polarizability. To obtain this relation-its counterpart in [12] by multiplicative and additive
ship, we note that, in equation (1), we can, without anynumerical factors, adjusted so as to make the isotropic
loss of generality, de® ne the laboratory frame so thataverage of the potential equal to zero, and to facilitate
n = e3 = (0, 0, 1) at an arbitrary point, thuscontact and comparison with the Lebwohl± Lasher

model, which corresponds to equal values of the elastic
constants, that is l= m = r = 0. n ¯ (=

9
n)=

qn2

qx1
Õ

qn1

qx2
(16)

It is helpful to summarize brie¯ y the argument
developed in §4.2 of [12] : the authors start from a and
suitably discretized version of the elastic free energy

(n
9

(=
9

n))2 = (=
9

n)21 + (=
9

n)22 ,density, and consider a director ® eld depending on two
coordinates only; then their discretized elastic free energy

= Aqn3

qx2
Õ

qnx

qx3B2

+Aqn1

qx3
Õ

qn3

qx1B2

. (17)density becomes pairwise additive. After interpreting
the resulting equation in terms of scalar products, they
propose a pair potential generalizing it; they ® nally We now consider two neighbouring points x ¾ and x ² ,
express the potential parameters in terms of elastic such that x ² Õ x ¾ = m , where m is a unit vector lying
constants by considering the energies of just ® ve speci® c along a cartesian axis (i.e. coinciding with one of the
con® gurations. three ea s), while n ¾ and n ² denote the corresponding

A similar model has already been studied in the directors, with n ¾ = e3 and n ² = (j, g, f). We further
literature in connection with the simulation of nematic assume that j# 0, g# 0, f# 1, thus |j |& |1 Õ f|,
liquid crystals [20] , i.e. |g|& |1 Õ f|, in keeping with the requirement that the

director orientation changes slowly in a nematic. The
derivatives appearing in equations (16) and (17) are thenD j k =

e

r
6 { (c

2 Õ c)[P2 (a j )+P2 (ak )]
approximated by

+ c
2[ (9a j akb j k Õ 1 ) Õ P2 (b j k ) Õ 6P 2 (a j )P 2 (ak )]}. qnc

qx b

= G(n ²
c Õ n ¾c ), if m = eb

0, else.
(18)

(15)
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874 G. R. Luckhurst and S. Romano

Equations (16) and (17) become therefore, to lowest for s= e3 ,
order:

a j = 1, ak= f,

for m = e1 ,
W Õ W0 = Õ C3

2
(l+n)+m+

9

2
rD(j

2 +g
2
)+rC .

= ¯ n = j, (19)
(33)

n ¯ (=
9

n)= g, (20)
Here the quartic polynomials A , B , and C are de® ned by

qn3

qx1
= f Õ 1, (21)

A =
9

4
j

2
(j

2 +g
2
), B =

9

4
g

2
(j

2 +g
2
), C =

9

4
(j

2 +g
2
)
2

2Y = K 1 j
2 +K 2 g

2
; (22)

(34)

and the value W0 corresponds to j = g= 0 , i.e. to thefor m = e2 ,
two molecules being parallel.

In the limit of small angular displacements, we can= ¯ n = g, (23)
identify pairs of corresponding expressions for Y and

n ¯ (=
9

n)= j, (24)
W Õ W0 , respectively; by equating lowest order terms, we
obtainqn3

qx2
= f Õ 1, (25)

2Y = K 1 g
2 +K 2 j

2 ; (26)

for m = e3 , GLK 1 = +
3

2
(l Õ n+2r)

LK 2 = +
3

2
(Õ n+r)

LK 3 = Õ C3

2
(l+n)+m+

9

2
rD.

(35)

= ¯ n = f Õ 1, (27)

n ¯ (=
9

n)= 0, (28)

(n
9

(=
9

n))2 = j
2+g

2
, (29) We note here that, had higher rank terms been included

in the pair potential, then these would also have contri-
2Y = K 3 (j

2 +g
2
). (30) buted to the lowest order terms in the expansion, thus

introducing more parameters. These expressions connectWe now obtain an analogous set of expressions for the three elastic constants and the four parameters in
the pair potential given in equation (13), by further the pair potential; some other assumption must now be
assuming that one of the two unit vectors is aligned made, in order to solve equations (35) with respect to
along a lattice axis, say uj = e3 , uk= (j, g, f), thus b j k= f. the potential parameters. We choose here to set r equal
Then the expressions for the pair potential simplify to zero, thus dropping all fourth and higher order terms
(exactly) as follows for the three orientations of the in equation (8), which gives
intermolecular vector allowed by the simple cubic lattice:

for s= e1 ,

a j = 0, ak= j, GLK 1 = +
3

2
(l Õ n)

LK 2 = Õ
3

2
n

LK 3 = Õ C3

2
(l+n)+mD,

W Õ W0 = +
3

2
[ (l Õ n+2r)j

2 + (Õ n+r)g
2] Õ rA ;

(31)
i.e.

for s = e2 ,

a j = 0, ak= g, Gl= +
2

3
L (K 1 Õ K 2 )

n= Õ
2

3
LK 2

m= L (Õ K 1 +2K 2 Õ K 3 );

(36)
W Õ W0 = +

3

2
[ (Õ n+r)j

2 + (l Õ n+2r)g
2] Õ rB ;

(32)
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875Simulation of a nematogenic lattice model

in the S-function language, this choice means dropping Prost [2] , i.e.
S422 and S242 [17± 19] (see the Appendix). The assump-
tion used here, i.e. setting r to zero, is not the only one
possible (for example, we could think of setting l= 0 GK 1 = 7 Ö 10 Õ

12 N

K 2 = 4.3 Ö 10Õ
12 N

K 3 = 17 Ö 10Õ
12 N.

(38)
instead of r in equations (35)), but, in the present
context, our choice seems to be the most straightforward,

The coe� cients l, m, n, r, calculated from them weresince it removes the highest rank term from the expansion
rescaled by dividing by |n|; the resulting pair potential,of the potential. To conclude, we are now studying a
equation (13), hereafter referred to as Model 1 (M1), ispair potential of the form

W = eGl[P 2 (a j )+P 2 (ak )]+mAa j ak b j k Õ
1

9BW = l[P 2 (a j )+P2 (ak )]+mAa j akb j k Õ
1

9B+nP 2 (b j k ).

+nP 2 (b j k )+r[P 2 (a j )+P 2 (ak )]P 2 (b j k )H (39)(37)

withNote also that both the present scheme and the
argument outlined in [12] involve a signi® cant extra- l= 0.79039, m = Õ 1.0611, n= Õ 1, r = Õ 0.43668.
polation: the expressions for the pair potential and for

(40)the elastic free energy density are de® ned for all values
of their independent variables, but become simple and Here e (including the length L ) is a positive quantity
easily comparable only for some special sets of con- setting energy and temperature scales, i.e. T * = kBT /e, and
® gurations, usually in the limit of small angular displace- the scaled potential energy per particle is U * = U /(N e).

We now proceed in the same way for equation (37), andments between vectors on neighbouring points. However,
the resulting pair potential, hereafter referred to asonce the mapping has been obtained, the resulting
Model 2 (M2), is the simpler functionequations for the pair potential are to be used in the

general case of arbitrary mutual angular displacements.
W = eGl[P 2 (a j )+P 2 (ak )]+mAa j akb j k Õ

1

9B+nP2 (b j k )HAnother mapping scheme can be found in a paper by
Bedford and Windle [6] ; their equations (17) to (20)
for the pair potential are given by rational functions in (41)
the components of the unit vectors involved. As far as with
we could check, in the general case of di� erent elastic

l= 0.62791, m = Õ 5.3721, n= Õ 1. (42)constants, these equations are not written in terms of
scalar products, and so are not gauge invariant. This As with M1, our study of M2 was aimed at elucidating
was veri® ed by considering the central unit vector to be the thermodynamic and structural behaviour of the
aligned along the lattice z-axis, and the surrounding unit bulk system. The simulations were carried out on cubic
vector 6̀’ (in the notation of [6] ) to be its vertical samples, using periodic boundary conditions with di� erent
neighbour, with components (j, g, f); then the pair sample sizes N = q

3
, q = 12, 16, 20, 24, and closely corre-

interaction energy should reduce to a function of f only. spond to those described in [16] . Each cycle (sweep)
comprised 2N steps, and included sub-lattice sweeps.However, after carrying out the appropriate substitutions,
Note that, for each lattice site j, we can de® ne the sitewe found an irreducible dependence on j and g; our
parity xj = Ô 1 depending on the sum of its coordinatesformulae manipulations were also checked by means of
being even or odd. That is, the lattice is bipartite, inthe computer algebra package Maple.
that it consists of two interpenetrating sub-lattices of
even and odd parities, where each site has six nearest-
neighbour sites of the opposite parity, then twelve

3. Simulation aspects next-nearest neighbours of the same parity, and so on.
As for the choice of the parameters to be used for the Since the potential is restricted to nearest neighbours,

two potential models, in [16] we have considered the there is no interaction between particles associated with
comparatively simple and extensively studied nematogen lattice sites of the same parity, and so the outcomes of
4,4 ¾ -dimethoxyazoxybenzene ( para-azoxyanisole, PAA) attempted Monte Carlo moves taking place at di� erent
and taken the values of its elastic constants at 120ß C, sites of the same parity are independent of one another.
which corresponds to a reduced temperature, T /TNI, We used a cycle consisting of N steps, where the tagged

site was chosen randomly, followed by N /2 steps involvingof 0.963, as reported in the book by de Gennes and
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876 G. R. Luckhurst and S. Romano

lattice sites of one parity, and ® nally N /2 steps involving quantities were calculated at two temperatures, i.e.
T * = 2.35 and 2.45 and again for q = 20, by analysinglattice sites of the other parity; this approach is found

to be particularly e� cient and has already been used one con® guration every fourth sweep; as we shall see,
their plots show a rapid decay to a limiting valueboth for magnetic [26, 27] and nematogenic lattice models

[28, 29] . Calculations were carried out in cascade, in consistent with the corresponding order parameter, i.e.
order of increasing temperature; equilibration runs took lim

r � 2
G L (r)= P

± 2
L . (47)

between 25000 and 50 000 cycles, and production runs
took between 100 000 and 250 000 cycles. The short range order parameters [31]

The quantities calculated from the simulation include
sL = G L (r = 1 )= 7 P L (u j ¯ uk ) 8 (48)the scaled potential energy per particle U * and the

con® gurational heat capacity which was determined as determined at the nearest-neighbour separation, were
a ¯ uctuation quantity; we also evaluated long range evaluated at all temperatures, by analysing one con-
orientational order parameters of various ranks, P

±
L , ® guration every cycle; s2 is not related to the potential

L= 2, 4, 6, and 8. The second and fourth rank orientational energy in any simple way, in contrast with the Lebwohl±
correlation coe� cients and the singlet orientational distri- Lasher model, where there is a direct proportionality
bution function were calculated at selected temperatures. between the two quantities.
The long range orientational order parameters are
de® ned by [30, 31] 4. Results and comparisons

Before presenting our simulation results, it is helpfulP
±

L = 7 P L (cos h) 8 , L = 2, 4, 6, 8 (43)
to recall some molecular ® eld predictions, to be used for

where h is the angle between an individual molecule and comparison with them [36± 39] . Upon summing over
the director; they were obtained in the following way. the six allowed orientations of the intermolecular vector
Along the Monte Carlo chain we calculated both the both l and r terms vanish, and the resulting potential
second rank tensor of mean torque is given for both potential models by

Qa b = (3 7 ua u b 8 loc Õ da b )/2 (44) WÄ = 2W
*
0 P

±
2 P 2 (cos h), W

*
0 = [3n+ (2/3 )m], (49)

and its fourth rank counterpart [30± 33] ; here the where h denotes the angle between an individual
subscript loc refers to the current con® guration, and molecule and the director, and P

±
2 is the second rank

the Greek subscripts label cartesian components. These order parameter. The corresponding nematic± isotropic
quantities were accumulated to give macrostep averages, transition temperature given by the molecular ® eld
then used to calculate P

±
2,macr and P

±
4,macr , as discussed theory is 2|W *

0 |0.2202/kB .
elsewhere [30± 34] . In addition, for every sweep the We note that, for both potential models, W

*
0 is the

current second rank ordering tensor was diagonalized, energy per particle of the con® guration (C ) where all
and the instantaneous director v identi® ed with the particles are parallel to a lattice vector ea . Let us also
eigenvector associated with the eigenvalue possessing point out that, for a given pair potential model, this
the largest magnitude; we then calculated the quantities molecular ® eld approach may or may not be qualitatively
7 P L (u ¯ v) 8 loc and averaged them. Since the director is correct (see an example in [23] ), depending on the
known for the current con® guration, this can also be numerical values of the coe� cients; in other words, the
used to calculate the singlet orientational distribution con® guration C may but need not be the ground state;
function [30, 31, 34, 35] . A 1001 bin histogram of f (h) however it is the ground state for the potential models
versus |cos h| was calculated at T * = 2.35 and for a M1 and M2. For M1, the ground state energy U

*
0 found

system size of q = 20. The underlying symmetry of the for the values for m and n (see equation (40)) is Õ 3.7074,
nematic phase means that this quantity is an even and so the corresponding transition temperature pre-
function of cos h, and that the angle can be restricted dicted by molecular ® eld theory is T

*
NI,MF= 1.6327,

between 0 and p/2; it can, therefore, be expanded as compared with 1.3212 for the Lebwohl± Lasher model
(the change in notation from W

*
0 to U

*
0 re¯ ects the

f (h)=
1

2 C1 + �
L > 0, even

(2L+1 )P
±

L P L (cos h)D. (45) scaling by e). The other molecular ® eld predictions
for the transitional properties are DS

NI
MF /R = 0.417,

P
± NI

2,MF= 0.429, P
± NI

4,MF= 0.120, for the transitional entropy,The orientational correlation coe� cients [30, 31] are
second and fourth rank order parameters, respectivelyde® ned by
[36± 39] . In the case of M2, the values of m and n yield

G L (r)= 7 P L (u j ¯ uk ) 8 , L = 2, 4 (46)
U

*
0 = Õ 6.5814, and thus T

*
NI,MF= 2.8984.

The simulation results for the potential energy andand are functions of the (dimensionless) interparticle
separation r = |p j Õ pk |. These computationally expensive the con® gurational heat capacity are plotted in ® gures 1
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877Simulation of a nematogenic lattice model

Figure 2. M2: simulation results for the con® gurationalFigure 1. M2: simulation results for the potential energy,
obtained with di� erent sample sizes. Circles: q = 12; heat capacity, obtained with di� erent sample sizes. Circles:

q= 12; squares: q = 16; triangles: q = 20; diamonds: q = 24.squares: q = 16; triangles: q = 20; diamonds: q = 24; the
associated statistical errors fall within symbol sizes.

and 2; they are found to be independent of sample size
for T * < 2.36, then show a pronounced dependence on
the system sizes up to T * # 2.42, and again become
independent of the sample size above this temperature.
A small temperature step of 0.002 was used in the range
between T * = 2.37 and 2.39: here the heat capacity
exhibits a maximum, growing narrower and higher as
the sample size increases, and this is consistent with a
® rst order transition [31] ; the energy results over the
same range are also consistent with a weak discontinuity
at the transition.

The results for the order parameters, obtained by
analysing one con® guration every cycle, are plotted in
® gures 3 and 4; they are roughly independent of sample
size up to T * # T

*
1 = 2.378, and show a pronounced

decrease with sample size above this temperature. Their
counterparts obtained via macrostep ordering tensors
P
±

2,macr and P
±

4,macr (not reported here) exhibit the same
qualitative trend; in the region T * < T

*
1 , there is a good

agreement between the two sets of results; in contrast,
above this temperature, P

±
2,macr and P

±
4,macr decrease more

rapidly with increasing temperature and sample size;
this comparison helps to locate the transition temper- Figure 3. M2: simulation results for the second rank order
ature. The results for P

±
6 and P

±
8 (not reported here) are parameter, obtained with di� erent sample sizes. Circles:

q = 12; squares: q = 16; triangles: q = 20; diamonds: q = 24.much smaller (for example, at T * = 2.3, P
±

6 is about 0.02,
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878 G. R. Luckhurst and S. Romano

Figure 5. M2: simulation results for the short range orderFigure 4. M2: simulation results for the fourth rank order
parameter, obtained with di� erent sample sizes. Circles: parameter s2 [see equation (48)] , obtained with di� erent

sample sizes. Circles: q = 12; squares: q = 16; triangles:q = 12; squares: q = 16; triangles: q = 20; diamonds: q = 24.
q = 20; diamonds: q = 24.

and P
±

8 is about 0.002), and seem to go continuously to
zero with increasing temperature.

Results for the short range order parameters s2 and
s4 are plotted in ® gures 5 and 6, respectively; their
sample-size dependences follow the pattern displayed by
the potential energy. We also mention that, both for M1
[16] and M2, the plots of s4 versus s2 (not reported
here) are linear to a good approximation.

These results are consistent with a comparatively
weak ® rst order transition between a nematic and an
isotropic phase. To discuss this it is helpful to de® ne the
three temperatures T

*
1 = 2.378, T

*
2 = 2.380, T

*
3 = 2.382,

and the associated potential energies U
*
1 ,U

*
2 , U

*
3

for q = 24. The system is in the ordered phase for
T * < T

*
1 , and in the disordered phase for T * > T

*
3 ;

we propose the intermediate temperature T
*
2 , i.e. the

abscissa of the peak of the heat capacity, as the transition
temperature. The uncertainty in this is conservatively
taken to be the temperature step used in the simulation,
i.e. T

*
NI= 2.380 Ô 0.002. We also take 0.5(U *

3 Õ U
*
1 ) as a

crude estimate of the energy jump at the phase transition.
As a rough estimate for the order parameters at the
nematic± isotropic transition P

± NI
2 and P

± NI
4 , we propose Figure 6. M2: simulation results for the short range order

the average of their values for q = 24 at the temperatures parameter s4 , obtained with di� erent sample sizes. Circles:
q = 12; squares: q = 16; triangles: q = 20; diamonds: q = 24.T

*
1 and T

*
2 . Our estimates for the transitional properties
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879Simulation of a nematogenic lattice model

obtained in this way are then

T
*
NI= 2.380 Ô 0.002

DU
*
NI= 0.079 Ô 0.006

DS
NI

/R = 0.033 Ô 0.003

P
± NI

2 = 0.25 Ô 0.01

P
± NI

4 = 0.041 Ô 0.002.

The corresponding quantities for the analogous M1
model are [16]

T
*
NI= 1.368 Ô 0.002

DU
*
NI= 0.066 Ô 0.005

DS
NI

/R = 0.048 Ô 0.004

P
± NI

2 = 0.26 Ô 0.01

P
± NI

4 = 0.045 Ô 0.002.

For comparison, we also give here simulation esti-
mates for the transitional properties of the Lebwohl±
Lasher model, obtained by other authors and for q Figure 7. M2: results for the singlet orientational distribution

function f (h) at T * = 2.35. Continuous curve: simulationranging up to 50 (a preliminary report of simulations
results; dashed line: fME, 2 , see equation (50); dotted line:carried out with q = 120 has been published [40] );
fME, 4 , see equation (51), hardly distinguishable from the

T
*
NI= 1.1232 Ô 0.0001 [28, 32, 41± 43] ; DU

*
NI= 0.20 Ô 0.04 continuous one. The relative statistical errors on the

and hence DS
NI

/R = 0.18 Ô 0.04 [42] ; notice that [32] simulation results range up to 0.2%.
proposes DS

NI
/R < 0.05, which is in better accord with

our results for models M1 and M2. Estimates reported
for P

± NI
2 are 0.27 [32] , 0.39 [42] , and 0.17 [43] , whereas To check the quantitative aspects of this, the ® rst four

P
± NI

4 has been estimated to be 0.04 [32] . These numbers order parameters were calculated by convoluting the
show that, even in such an extensively studied model, appropriate Legendre polynomials with this distribution
an accurate characterization of the transition is still a function, and found to be
di� cult task [42] .

The ratio between simulation and molecular ® eld
estimates for the transition temperature of the present

P
±

2 = 0.406 Ô 0.002

P
±

4= 0.095 Ô 0.001

P
±

6 = 0.013 Ô 0.001

P
±

8 = 0.0013 Ô 0.0001.

model is 0.821, versus the corresponding value of 0.850
for the Lebwohl± Lasher model, and 0.837 for M1 [16] .
We also note that the ground state energies of M1 and
M2 are rather di� erent, and that the ratio between

The corresponding values P
±

2, loc and P
±

4, loc obtained bysimulation estimates for the transition temperatures
analysing a con® guration every cycle, as explained innearly equals the ratio for the ground state energies, as
the previous section, agreed with the ones listed here toexpected from the molecular ® eld theory. The two
three signi® cant ® gures. These results for P

±
2 to P

±
8 weremodels M1 and M2 di� er from each other and from the

used to construct a truncated expansion of the singletsimpler Lebwohl± Lasher model by sizeable terms, only
orientational distribution function, including terms upsome of which contribute to the potential of mean
to P

±
8 , and this turned out to be indistinguishable fromtorque; yet, as a net result, these additional terms in the

the simulation results, to the resolution of the ® gure. Anpotential make comparatively little di� erence to the
alternative route to f (h) is via the maximum entropytransition temperature, moving it only slightly away
approach [44± 46] ; if only the second rank order para-from the molecular ® eld limit.
meter is known, then the distribution function takes theThe singlet orientational distribution function calcu-
formlated at T * = 2.35, for q = 20, is plotted in ® gure 7,

and shows the expected maximum when cos h is unity. fME, 2 (h)3 exp[c ¾2 P 2 (cos h)] , (50)
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880 G. R. Luckhurst and S. Romano

whereas, if both P
±

2 and P
±

4 are available, then

fME, 4 (h)3 exp[c ²
2 P2 (cos h)+ c ²

4 P 4 (cos h)] . (51)

Let us recall that order parameters of higher rank are
not normally available experimentally; P

±
2 is the dominant

one, and the next term P
±

4 is signi® cantly smaller.
The proportionality factors in equations (50) and

(51) allow for the normalization conditions of the distri-
bution function, and the c parameters were determined
by appropriate consistency constraints, i.e. by requiring
fME, 2 to reproduce P

±
2 , or requiring fME, 4 to reproduce

both P
±

2 and P
±

4 [44± 46] . The results of this ® tting
process are shown in ® gure 7; the overall goodness of
the resulting ® t to the simulation results was de® ned
quantitatively by calculating both the sum of squares
of deviations (j ) and the sum of squares of relative
deviations (g). Their values for the M1 distribution
function at T * = 1.35 were found to be [16]

c ¾2 = 1.838, j2 = 0.527, g2 = 3.065 (52)

and

c ²
2 = 1.903, c ²

4 = Õ 0.116; f ; c ²
4 /c

²
2 = Õ 0.061,

Figure 8. M2: simulation results for the logarithms of thej4 = 0.071, g4 = 0.053. (53) orientational correlation coe� cients at two di� erent temper-
atures. Circles: log G2 (r) at T * = 2.35 (nematic); squares:For the M2 model which we have studied
log G 2 (r) at T * = 2.45 (isotropic), triangles: log G 4 (r) at
T * = 2.35 (nematic); stars: log G 4 (r) at T * = 2.45 (isotropic).c ¾2 = 1.829, j2 = 0.807, g2 = 4.453 (54)
The dashed line corresponds to log P

± 2
2 at T * = 2.35, and

and the dotted one to log P
± 2

4 at the same temperature.

c ²
2 = 1.903, c ²

4 = Õ 0.136; f= Õ 0.071,

in [32] ) can be carried out by plotting their appro-
j4 = 0.015, g4 = 0.072. (55) priate simulation results versus the reduced temperature

T * /T
*
NI. The results for the potential energy are alsoTogether with these numerical results, ® gure 7 shows

that fME, 2 (h) yields a good but not quite perfect agree- scaled by the corresponding molecular ® eld ground state
energies U

*
0 . We note that, both for M1 and M2, onlyment with simulation results, and that fME, 4 (h) produces

a recognizable improvement. A qualitatively similar the simulation results obtained with the largest system
q = 24 have been used in this comparison, and that thesituation has been observed for the Lebwohl± Lasher

model, where c ²
4 is also negative, and about 8% of c ²

2 simulation results for the Lebwohl± Lasher model from
[32] were obtained with q = 30. The results for the[16, 32] .

The orientational correlation coe� cients G 2 (r) and potential energy are compared in ® gure 9, and show
recognizable quantitative di� erences, which are correlatedG 4 (r), calculated at two typical temperatures T * = 2.35

(nematic) and T * = 2.45 (isotropic), are plotted in with the estimated value of the jump in the potential
energy at the transition DU

*
NI. In contrast, comparisons® gure 8, as a function of the separation r; the logarith-

mic scale was chosen in order to compact four curves for the con® gurational heat capacityÐ ® gure 10, the
long range orientational order parameters Ð ® gure 11,while still being able to distinguish between them. All of

the four cases exhibit a rather steep decay of correlations and the short range order parameters s2 L Ð ® gure 12,
show a rather close agreement between M1 and M2,between r = 1 and r = Ó 3 , then a recognizable increase

at r = 2, and eventually monotonic decay at larger and a slightly larger di� erence between them and the
Lebwohl± Lasher model. This is perhaps to be expected,distances. This behaviour has been observed with other

short range lattice models [16, 29, 32] , whereas a mono- because, although all of the models contain the dominant
term in P 2 (b j k ), models M1 and M2, unlike the Lebwohl±tonic decay at all distances has been obtained for lattice

models with long range interactions [47] . Lasher model, have in addition, terms involving the orien-
tation of molecules with respect to the intermolecularComparison between the properties of the models M1,

M2 and the Lebwohl± Lasher model (see the Appendix vector.
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881Simulation of a nematogenic lattice model

Figure 10. Simulation results for the con® gurational heatFigure 9. Simulation results for U * /U
*
0 versus T * /T

*
NI, based

capacity versus the reduced temperature T * /T
*
NI, obtainedon the di� erent potential models. Diamonds: M1 [16] ;

for the di� erent potential models. Diamonds: M1 [16] ;circles: M2; stars: results for the Lebwohl± Lasher lattice
circles: M2; stars: results for the Lebwohl± Lasher latticemodel [32] .
model [32] .

Another, less severe, comparison of predictions for the
structural properties can also be obtained by plotting of transition, which ranges between 0.5 and 0.8kJ molÕ 1

[3, 51± 53] ; taking a value for DHP of 0.57kJ molÕ 1, theP
±

4 versus P
±

2 [32] , thus eliminating the explicit temper-
ature dependences of the order parameters, as we have entropy change at constant pressure DSP/R is estimated

to be 0.19 Ô 0.01 [3, 47, 51, 52] , and from it the transitiondone in ® gure 13. The molecular ® eld prediction can
be continued to values P

±
2 < P

± NI
2,MF by means of the entropy at constant volume DSV /R is found to be about

0.05. In addition, the order parameters P
± NI

2 and P
± NI

4 atmaximum entropy approximant fME, 2 , i.e. by using
equation (50) to calculate both P

±
2 and P

±
4 for a range of the transition have been determined to be 0.39 and 0.08,

respectively [54] . In terms of comparisons between modelvalues of c ¾2 [32] . The results show a fair qualitative
agreement between the predictions and the results prediction and experimental results, these quantities are

of two kinds, i.e. some of them depend on the scalingobtained for the three models, especially in the ordered
region. The failure to obtain complete agreement pre- parameter e in the model potential, that is TNI and DH P,

whereas others do not, namely P
± NI

2 , P
± NI

4 and DSV /R . Wesumably results from the importance of the fourth rank
term in the potential of mean torque, see equation (51). begin with those which do not require a knowledge of e.

Thus the models, both M1 and M2 as well as that ofSince the nematogen 4,4 ¾ -dimethoxyazoxybenzene
was involved in the choice of the elastic constants, we Lebwohl and Lasher, are in good agreement with the

small experimental transitional entropy at constanthave also attempted comparison with its experimental
properties. However, we emphasize that, because of the volume of 0.05. The order parameters obtained for the

three models are signi® cantly lower than the experi-underlying simpli® cations in the models (i.e. the assump-
tion of rigid and cylindrically symmetric molecules, and mental values [54] of 0.39 for P

± NI
2 and 0.08 for P

± NI
4 .

This di� erence could indicate the likely fact that thethe neglect of translational degrees of freedom), only a
qualitative agreement is to be expected [48] ; similar model pair potentials do not re¯ ect the true anisotropic

interactions between two PAA molecules, but might alsocomparisons for the Lebwohl± Lasher model can be
found in [43, 48] . Among the properties of interest to result from the di� culty of locating the phase transition

precisely in the simulations, combined with the strongus are the nematic± isotropic transition temperature,
which is in the range 407± 409 K [49± 51] , the enthalpy and apparently continuous dependence of the order
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882 G. R. Luckhurst and S. Romano

Figure 12. Simulation results for the short range order para-Figure 11. Simulation results for P
±

2 and P
±

4 versus the reduced
meters s2 and s4 versus T * /T

*
NI, obtained for the di� erenttemperature T * /T

*
NI, obtained for the di� erent potential

potential models. Squares: s2 for M1; circles: s2 for M2;models. Squares: P
±

2 for M1; circles: P
±

2 for M2; stars: P
±

2
diamonds: s4 for M1; triangles: s4 M2.for the Lebwohl± Lasher lattice model [32] ; diamonds: P

±
4

for M1; triangles: P
±

4 M2; asterisk: P
±

4 for the Lebwohl±
Lasher lattice model [32] . The predictions of the molecular
® eld theory are shown as the solid line for P

±
2 and the

dashed line for P
±

4 . for the Lebwohl± Lasher lattice model [28, 32, 41± 43] ,
combined with experimental densities, yields estimates
for the nematic± isotropic transition temperature ranging
between 554 and 546 K; the simulation estimates in [42]parameters on temperature in the vicinity of the phase

transition, see ® gures 3, 4 and 11. give DU NI= 0.82 kJ molÕ 1.
To conclude, our simulation results show a closeTo make a comparison with TNI and DH P we need to

be able to estimate the scaling parameter e. This can be qualitative similarity between models M1 and M2, a
somewhat worse agreement with the simpler Lebwohl±achieved by choosing L , for which we take the cube

root of the molar volume: values for the density of Lasher model, and a broad qualitative agreement with
experiment (see also more detailed comparisons in [16] );nematic 4,4 ¾ -dimethoxyazoxybenzene at room pressure

reported in the literature range between 1.140 and they also suggest that tailoring the pair potential to the
speci® c nematogen yields a slightly better description of1.190 g cmÕ

3 [49± 51] , so that the corresponding values
for L have a narrow range between 7.1 and 7.2 AÊ . It is it, within these limitations.
worth noticing that a change of temperature can cause
a signi® cant variation in the elastic constants, and hence The present extensive calculations were carried out,

on, among other machines, a cluster of DEC computersin the prediction of the transition temperature; this could
be used to improve the agreement with a particular belonging to the Sezione di Pavia of Istituto Nazionale

di Fisica Nucleare (INFN); allocation of computermodel. The simulation estimate for M1 yields a transition
temperature ranging between 546 and 538 K; the time by the Computer Centre of Pavia University

and CILEA (Consorzio Interuniversitario Lombardosimulation estimate for DU NI would then correspond
to 0.22kJ molÕ 1. On the other hand, the estimated per l’Elaborazione Automatica, Segrate, Milan), as well

as by CINECA (Centro Interuniversitario Nord-Est ditransition temperature for M2 ranges between 357 and
351 K, and DU NI corresponds to 0.1 kJ molÕ 1 . Finally, Calcolo Automatico, Casalecchio di Reno, Bologna),

within the INFM initiative on parallel computing, isif the three elastic constants are set to a common
value (their average) , then the transition temperature also gratefully acknowledged. This collaborative project
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883Simulation of a nematogenic lattice model

and L , with L in the range |J Õ K | to (J +K ). The
S-functions are de® ned by

SJKL (V)= (i )
J Õ KÕ L �

n,p , MAJ K L

n p M BC Jn (v j )C Kp (vk )

Ö C L M(v r ) (A2)

where C Jn (v j ) is a modi® ed spherical harmonic, v j

denotes the spherical coordinates of the symmetry axis

of molecule j in a laboratory frame, and AJ

n

K

p

L

M B is

a 3j symbol. Although this form of the S-functions is
particularly convenient when transforming between axis
systems [18, 19] , it is not so convenient when numerical
values of the pair potential are needed, as in computer
simulation. However, the S-functions can be expressed
in terms of the cartesian components of the unit vectors
u j , uk and r, for the molecular symmetry axes and
the intermolecular vector, respectively. In this form the
S-functions depend on the three scalar products a j , ak

and b j k de® ned in equation (12); the ® rst few of them
are

S000 (V)= 1 (A3a)Figure 13. Plot of P
±

4 versus P
±

2 , obtained for the di� erent
potential models. Squares: M1; circles: M2; stars:
Lebwohl± Lasher lattice model [32] . Continuous line:

S202 (V)=
1

2 Ó 5
(3a

2
j Õ 1 ) (A3b)molecular ® eld prediction; dashed line: continuation of

the molecular ® eld curve to P
±

2 < P
± NI

2,MP (see also text); the
dotted vertical line marks the separation between the

S022 (V)=
1

2 Ó 5
(3a

2
k Õ 1 ) (A3c)two curves.

was discussed during visits of GRL to Pavia University, S220 (V)=
1

2 Ó 5
(3b

2
j k Õ 1 ) (A3d)

funded by grants allocated by the British Council and
the Italian CNR, and then by INFM; S.R. also wishes
to thank Prof. S. Hess for inviting him for a short visit S222 (V)=

1

Ó 70
[2 Õ 3 (a

2
j +a

2
k +b

2
j k )+9a j akb j k] (A3e)

to Berlin, supported by Deutsche Forschungsgemeinschaft
under Sonderforschungsbereich SFB 335 Ànisotrope

S224 =
1

4 Ó 70
[1 +2b

2
j kFluide’. The present research was also partially funded

by Minestero dell’UniversitaÁ e della Ricerca Scienti® ca e
Tecnologica (MURST) through Co® n MURST 97 CFSIB. +5 (Õ a

2
j Õ a

2
k Õ 4a j akb j k+7a

2
j a

2
k )] (A3f )

Appendix S422 =
1

4 Ó 70
[1 +2a

2
k

S-Functions
The pair potential for uniaxial molecules can be

+5 (Õ a
2
j Õ b

2
j k Õ 4a j akb j k+7a

2
j b

2
j k )] (A3g)written quite generally as an expansion in a basis of

S-functions [17± 19] , which conveniently separates the
S242 =

1

4 Ó 70
[1 +2a

2
jdistance and orientation dependence of the potential.

That is,
+5 (Õ a

2
k Õ b

2
j k Õ 4a j akb j k+7a

2
k b

2
j k )]. (A3h)

W (r, V)= �
J,K, L

w JKL (r)SJKL (V), (A1)
The S-functions form an orthonormal and complete

set, and have various symmetry properties with respectwhere r is the intermolecular separation and V denotes
the orientations of the two molecules and the inter- to permutation of the subscripts [19] . The expansion

coe� cients wJKL (r) can be treated as adjustable para-molecular vector. For molecules with a centre of sym-
metry, the summation involves only even values of J , K meters with which to ® t a particular and only partly
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[25] Nehring, J., and Saupe, A ., 1972, J. chem. Phys., 56,determined model potential, as we have done in this
5527.paper; alternatively, they can be taken from a speci® c [26] Ferrenberg, A., and Landau, D . P., 1991, Phys. Rev. B,

and fully determined molecular interaction, such as the 44, 5081.
dispersion potential [21] . We have chosen here to [27] Peczak, P., and Landau, D . P., 1993, Phys. Rev. B,

47, 14 260.include only S-functions of low order, in the interest
[28] Greff, C. W ., and Lee, M . A ., 1994, Phys. Rev. E,of simplicity. Comparisons with the polynomials th in

49, 3225.equations (8) to (11) show that each set of functions can
[29] Romano, S., 1995, Int. J. mod. Phys. B, 9, 85.be expressed as a linear combination of the others; of [30] Zannoni, C., 1979, T he Molecular Physics of L iquid

course the transformation formulae become complicated Crystals, edited by G. R. Luckhurst and G. W. Gray
(London: Academic Press), Chap. 3, pp. 51± 84.as one goes to higher and higher orders. We note,

[31] Zannoni, C., 1979, T he Molecular Physics of L iquidfor example, that t2 in equation (9) is a combination
Crystals, edited by G. R. Luckhurst and G. W. Grayinvolving S000 (V), S202 (V), S022 (V), and S220 (V), and that
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